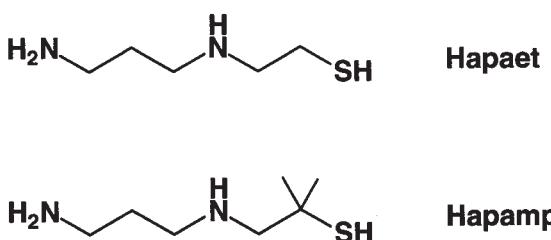
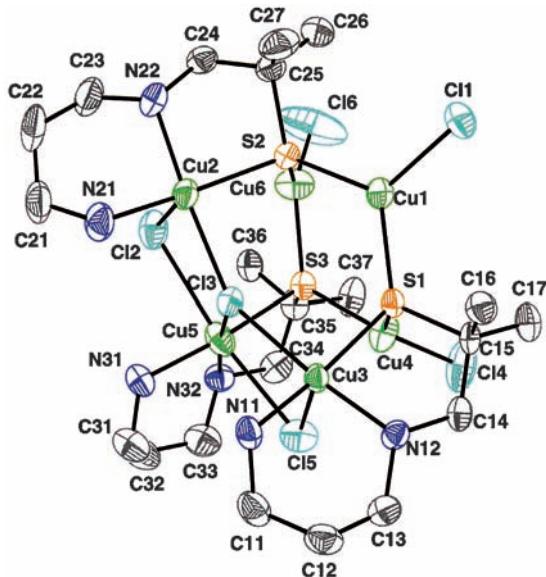


## Thiolato-Bridged Hexanuclear Cu<sup>I</sup>Cu<sup>II</sup> Mixed-Valence Complex


Takanori Kotera and Masahiro Mikuriya\*

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337

(Received March 28, 2002; CL-020281)


Thiolato-bridged hexanuclear mixed-valence complex,  $[\text{Cu}_3^{\text{I}}\text{Cu}_3^{\text{II}}(\text{apampt})_3\text{Cl}_6]$  (Hapampt = 1-[(3-aminopropyl)amino]-2-methylpropane-2-thiol), has been synthesized and characterized by X-ray crystallography. Spectroscopic data as well as structural features support a localized mixed-valence state. Magnetic susceptibility data show that a strong antiferromagnetic interaction is operating between the Cu<sup>II</sup> ions.

Metal-thiolate compounds are of considerable interest in relation to biologically significant metal-cysteine centers in metal enzymes.<sup>1</sup> Especially, thiolato-bridged Cu<sup>I</sup>Cu<sup>II</sup> mixed-valence complexes have been focused from a view of models for nitrous oxide reductase and cytochrome *c* oxidase.<sup>2</sup> We have engaged in synthetic work on thiolato-bridged metal complexes with *N,N,S*-donor tridentate ligands with a view to developing the fundamental chemistry of metal thiolate compounds. So far, we isolated dinuclear,<sup>3</sup> trinuclear,<sup>4,5</sup> tetranuclear,<sup>6</sup> and infinite polynuclear<sup>5</sup> complexes of various metal ions except for copper ion by the use of these tridentate ligands including 2-[(3-aminopropyl)amino]ethanethiol (Hapaet). As part of this effort, we have synthesized a new *N,N,S*-donor tridentate thiolic ligand, 1-[(3-aminopropyl)amino]-2-methylpropane-2-thiol (Hapampt),<sup>7</sup> which has two methyl groups added in alpha position of the thiolato-sulfur, in attempt to extend our systems to copper chemistry and isolated a novel hexanuclear Cu<sup>I</sup>Cu<sup>II</sup> mixed-valence complex,  $[\text{Cu}_3^{\text{I}}\text{Cu}_3^{\text{II}}(\text{apampt})_3\text{Cl}_6]$  (**1**). Herein we report synthesis and characterization of **1**.



Complex **1** was prepared as follows.<sup>8</sup> To a methanol (5 cm<sup>3</sup>) solution of Hapampt (32 mg, 0.2 mmol) was added a methanol (5 cm<sup>3</sup>) solution of copper (II) chloride dihydrate (34 mg, 0.2 mmol). The solution was stirred at ca. 25 °C for 5 min and filtered. The resulting light brown filtrate was allowed to stand several days at room temperature. Dark brown crystals deposited were collected by filtration. Yield, 27 mg (74% based on the metal source). Found: C, 22.56; H, 4.77; N, 7.41%. Calcd for  $\text{C}_{21}\text{H}_{55}\text{Cl}_6\text{Cu}_6\text{N}_6\text{O}_2\text{S}_3$  C, 22.64; H, 4.98; N, 7.54%.

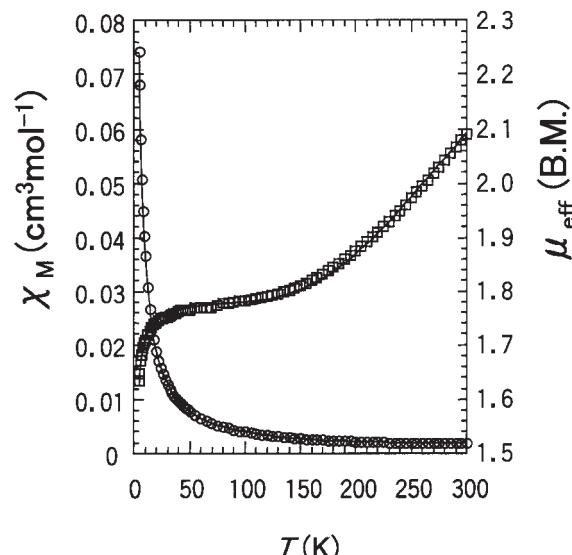
The molecular structure of **1**·2CH<sub>3</sub>OH, which was determined by X-ray crystallography,<sup>9</sup> is shown in Figure 1. The hexanuclear copper core is composed of one six-membered ring [Cu1-S1-Cu4-S3-Cu6-S2] and two adjacent four-membered rings [Cu2-Cl3-Cu5-Cl2] and [Cu3-Cl5-Cu5-Cl3]. Charge consideration requires a formal Cu<sup>I</sup><sub>3</sub>Cu<sup>II</sup><sub>3</sub> description of this core



**Figure 1.** Perspective view of **1**·2CH<sub>3</sub>OH, showing the atom-labeling scheme. Solvent molecules and hydrogen atoms are omitted for clarity. Selected bond distances (/ $\text{\AA}$ ) and angles ( $\phi$ /°): Cu1-Cu2 3.958(1), Cu1-Cu3 3.925(1), Cu1-Cu4 3.722(1), Cu1-Cu5 5.229(2), Cu1-Cu6 3.521(2), Cu2-Cu3 4.625(1), Cu2-Cu4 5.420(2), Cu2-Cu5 3.850(1), Cu2-Cu6 3.506(2), Cu3-Cu4 3.375(1), Cu3-Cu5 3.872(2), Cu3-Cu6 5.396(2), Cu4-Cu5 3.547(2), Cu4-Cu6 3.777(2), Cu5-Cu6 3.730(2), Cu1-Cu11 2.226(2), Cu1-S1 2.226(2), Cu1-S2 2.225(2), Cu2-Cu12 2.607(2), Cu2-Cl3 2.370(2), Cu2-S2 2.273(2), Cu2-N21 2.005(6), Cu2-N22 2.019(6), Cu3-Cl3 2.396(2), Cu3-C15 2.557(2), Cu3-S1 2.271(2), Cu3-N11 1.990(5), Cu3-N12 2.022(5), Cu4-C14 2.238(2), Cu4-S1 2.259(2), Cu4-S3 2.237(2), Cu5-Cl2 2.762(2), Cu5-Cl3 2.696(2), Cu5-C15 2.839(2), Cu5-S3 2.253(2), Cu5-N31 1.979(5), Cu5-N32 2.051(5), Cu6-Cl6 2.216(3), Cu6-S2 2.230(2), Cu6-S3 2.232(2), Cu1-S1-Cu3 121.56(8), Cu1-S1-Cu4 112.16(8), Cu1-S2-Cu2 123.23(8), Cu1-S2-Cu6 104.44(8), Cu4-S3-Cu5 104.32(8), Cu4-S3-Cu6 115.34(8), Cu5-S3-Cu6 112.53(8), Cu2-Cl2-Cu5 91.57(7), Cu2-Cl3-Cu3 152.07(9), Cu3-Cl3-Cu5 98.82(7), Cu3-Cl5-Cu5 91.55(7).

and thus we can assign the Cu1, Cu4, and Cu6 atoms to Cu<sup>I</sup> and the Cu2, Cu3, and Cu5 atoms to Cu<sup>II</sup>, respectively, based on the different coordination environments as described below. Each copper atoms (Cu1, Cu4, and Cu6) of the former chair-like ring is coordinated to two thiolato-sulfur atoms and chloride ion to form a trigonal planar geometry. The Cu<sup>I</sup>-S bond distances are 2.225(2)–2.259(2)  $\text{\AA}$ . These bond lengths are within the range found in Cu<sup>I</sup> complexes.<sup>10</sup> On the other hand, each of the three copper atoms (Cu2, Cu3, and Cu5) of the latter rings is chelated by thiolate ligand, apampt<sup>–</sup>, with *N,N,S*-donor atoms. Coordination environments of Cu2 and Cu3 can be described as an elongated

square-pyramidal configuration with two amino-nitrogen atoms and thiolato-sulfur atoms (N21, N22, S2 for Cu2; N11, N12, S1 for Cu3) of apampt and chloride ion (Cl3) in the equatorial positions and a chloride ion (Cl2 for Cu2; Cl5 for Cu3) at the apex, while Cu5 takes a distorted octahedral geometry with two amino-nitrogen atoms and thiolato-sulfur atom of apampt (N31, N32, and S3) and three chloride ions (Cl2, Cl3, and Cl5). The Cu<sup>II</sup>–S distances are 2.225(2)–2.273(2) Å. Interestingly, large difference is not found in these Cu<sup>II</sup>–S distances compared with the Cu<sup>I</sup>–S bonds. Ligation of thiolato-sulfur to copper (II) has been hardly established by synthesizing complexes, although such bonding is frequently observed in copper proteins. Both the Cu<sup>I</sup>–S and Cu<sup>II</sup>–S distances of the present complex are comparable to the values found in very few thiolato-bridged Cu<sup>I</sup>Cu<sup>II</sup> mixed valence complexes.<sup>2,11</sup> The Cu–Cl bond distances around the trigonal Cu atom [Cu–Cl 2.216(3)–2.238(2) Å] are shorter than the Cu–Cl distances of the square-pyramidal Cu atoms [Cu–Cl 2.370(2)–2.607(2) Å] and octahedral Cu atom [Cu–Cl 2.696(2)–2.839(2) Å]. The Cu–Cl distances of the trigonal copper atoms are in the typical range of the Cu<sup>I</sup>–Cl distances, and those of the square-pyramidal and octahedral copper atoms are in the normal range of the Cu<sup>II</sup>–Cl distances.<sup>10</sup> The Cu<sup>I</sup>–Cu<sup>I</sup>, Cu<sup>II</sup>–Cu<sup>II</sup>, and Cu<sup>I</sup>–Cu<sup>II</sup> distances are 3.521(2)–3.777(2), 3.850(1)–4.625(1), and 3.375(1)–5.420(2) Å, respectively.


The optical absorption spectrum of **1** in dmso contains features at  $\lambda_{\text{max}} = 266$  nm ( $\epsilon 14200 \text{ M}^{-1} \text{ cm}^{-1}$ ), 378 nm (5700), and 620 nm (940). The intense former two absorptions in the UV region can be attributed to chloro-to-Cu<sup>II</sup> and thiolato-to-Cu<sup>II</sup> charge transfer transitions, respectively.<sup>11,12</sup> The absorption in the visible region can be assigned to ligand field transitions of the Cu<sup>II</sup>N<sub>2</sub>SCl<sub>2</sub> and Cu<sup>II</sup>N<sub>2</sub>SCl<sub>3</sub> moieties. Since the IT band was not observed in this complex, the charge of the metal ions seems to be fully localized.

The magnetic moment of **1** at room temperature (2.1 BM) suggests that a strong antiferromagnetic interaction is operating between the Cu<sup>II</sup> ions. The magnetic moments of **1** measured to 4.5 K are plotted in Figure 2. The magnetic data were analyzed with van Vleck equation including a Weiss temperature  $\theta$  based on the Heisenberg model [ $H = -2JS_{\text{Cu}2} \cdot S_{\text{Cu}3} - 2J'(S_{\text{Cu}2} \cdot S_{\text{Cu}5} + S_{\text{Cu}3} \cdot S_{\text{Cu}5})$ .<sup>13</sup> The best fitting parameters are  $J = -602 \text{ cm}^{-1}$ ,  $J' = -2.5 \text{ cm}^{-1}$ ,  $g = 2.06$ ,  $\theta = -0.91 \text{ K}$ . The result shows that a strong antiferromagnetic interaction mainly occurs between the Cu2 and Cu3 atoms. The bond distances of Cu2–Cl3 [2.370(2) Å] and Cu3–Cl3 [2.396(2) Å] are significantly shorter than those of Cu2–Cl2, Cu5–Cl2, Cu5–Cl5, and Cu3–Cl5 [2.557(2)–2.839(2) Å] and the Cu2–Cl3–Cu3 angle is 152.07(9)°. This feature may contribute to the strong antiferromagnetism of **1**, because a larger antiferromagnetic coupling would be expected as the bridging angle increases.

At present, this kind of Cu<sup>I</sup>Cu<sup>II</sup> mixed-valence complex has not yet be isolated by the use of unmethylated ligand, Hapaet. Hence, methyl groups of the present ligand may be favorable to the formation of the mixed-valence state, because the substituent groups adjacent to the thiolato-sulfur may protect the Cu<sup>I</sup> ions against oxidation by the steric hindrance. Further study is now underway in our laboratory.

## References and Notes

- For example, see B. Krebs and G. Henkel, *Angew. Chem., Int. Ed. Engl.*, **30**, 769 (1991).



**Figure 2.** Magnetic susceptibility data (○) and effective magnetic moments (□) of **1**. The solid lines were calculated from the van Vleck equation based on the Heisenberg model.<sup>13</sup>

- R. P. Houser, V. G. Young, Jr., and W. B. Tolman, *J. Am. Chem. Soc.*, **118**, 2101 (1996); R. P. Houser and W. B. Tolman, *Inorg. Chem.*, **34**, 1632 (1995).
- M. Handa, M. Mikuriya, J.-Z. Zhuang, H. Okawa, and S. Kida, *Bull. Chem. Soc. Jpn.*, **61**, 3883 (1988).
- M. Mikuriya, T. Kotera, F. Adachi, M. Handa, M. Koikawa, and H. Okawa, *Bull. Chem. Soc. Jpn.*, **68**, 574 (1995); M. Mikuriya, H. Tsutsumi, R. Nukada, M. Handa, and Y. Sayama, *Bull. Chem. Soc. Jpn.*, **69**, 3489 (1996); M. Mikuriya, X. Jian, S. Ikemi, T. Kawahashi, and H. Tsutsumi, *Bull. Chem. Soc. Jpn.*, **71**, 2161 (1998).
- M. Mikuriya, F. Adachi, H. Iwasawa, M. Handa, M. Koikawa, and H. Okawa, *Bull. Chem. Soc. Jpn.*, **67**, 3263 (1994); M. Mikuriya, X. Jian, S. Ikemi, T. Kawahashi, H. Tsutsumi, A. Nakasone, and J.-W. Lim, *Inorg. Chim. Acta*, **312**, 183 (2001).
- M. Mikuriya and T. Kotera, *Chem. Lett.*, **1998**, 971; T. Kawahashi, M. Mikuriya, R. Nukada, and J.-W. Lim, *Bull. Chem. Soc. Jpn.*, **74**, 323 (2001).
- A toluene solution of isobutylene sulfide (8.6 g/50 cm<sup>3</sup>) was added dropwise to a toluene solution (200 cm<sup>3</sup>) containing 1,3-diaminopropane (74.1 g). The mixture was heated at reflux for 2 h. The product was collected by distillation at 79–81 °C/5 mmHg and 10.4 grams of Hapampt was obtained.
- All manipulations were performed under argon by using standard Schlenk techniques.
- Crystallographic data: for **1**·2CH<sub>3</sub>OH; C<sub>23</sub>H<sub>59</sub>Cl<sub>6</sub>Cu<sub>6</sub>N<sub>6</sub>O<sub>2</sub>S<sub>3</sub> fw = 1141.88, orthorhombic, space group *Pbca*,  $a = 18.706(5)$ ,  $b = 18.283(5)$ ,  $c = 23.962(6)$  Å,  $V = 8195(4)$  Å<sup>3</sup>,  $Z = 8$ ,  $d_{\text{calcd}} = 1.85 \text{ g cm}^{-3}$ ,  $\mu(\text{Mo K}\alpha) = 36.34 \text{ cm}^{-1}$ , 33826 reflections collected, 5936 independent reflections,  $R1[I > 2\sigma(I)] = 0.048$ ,  $wR2[I > 2\sigma(I)] = 0.110$ . Intensity data were collected on a Bruker CCD X-ray diffractometer using graphite-monochromated Mo-K $\alpha$  radiation. The structure was solved by the direct method and refined by the full-matrix least-squares method using a SHELXTL software package.
- M. Dunaj-Jurco, G. Ondrejovic, and M. Melnik, *Coord. Chem. Rev.*, **83**, 1 (1988).
- P. K. Bharadwaj, E. John, C.-L. Xie, D. Zhang, D. N. Hendrickson, J. A. Potenza, and H. J. Schugar, *Inorg. Chem.*, **25**, 4541 (1986).
- V. M. Miskowski, J. A. Thich, R. Solomon, and H. J. Schugar, *J. Am. Chem. Soc.*, **98**, 8344 (1976).
- B. N. Figgis and J. Martin, *J. Chem. Soc., Dalton Trans.*, **1972**, 2174.